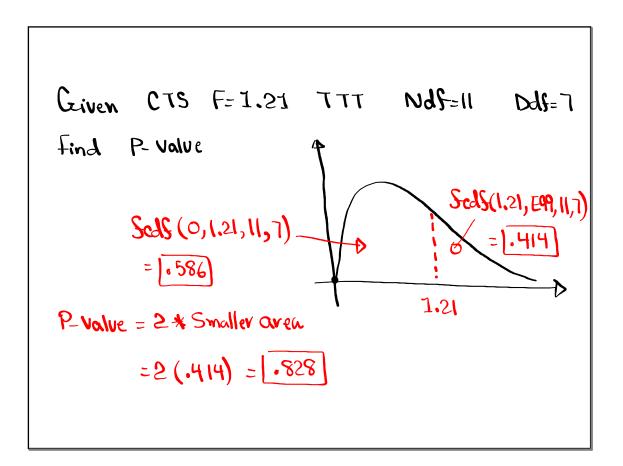
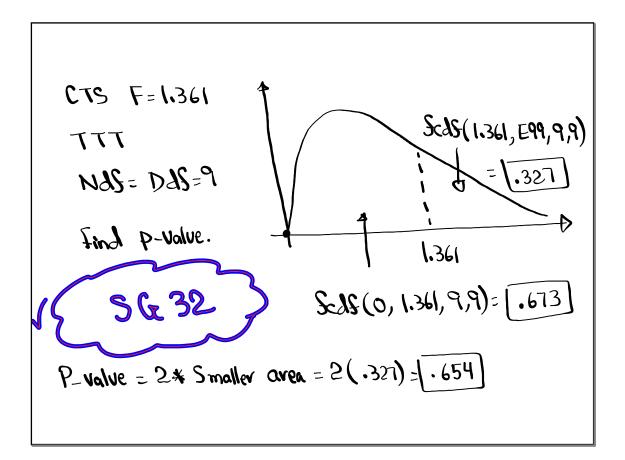


Comparing Two Population Standard devictions:


$$G_{1} \notin G_{2}$$

Ho: $G_{1} = G_{2}$
 $M_{1} = M_{2} =$
 $M_{2} = M_{2} =$
 $S_{1} > S_{2}$
CTS F = $\Rightarrow a$ -SampFTest CTS F= $\frac{S_{1}^{2}}{S_{2}^{2}}$
Proceed with testing chart ScdS
to draw conclusion about Ho! $M_{1} = M_{1} = 1$
 $D = S_{2} = M_{2} = 1$
Final Conclusion : Reject the Claim or
FTR the chain

Griven Sample 1 Sample 2


$$n_1 = 8$$
 $n_2 = 15$ Use $\alpha = .02$ to
 $n_1 = 8$ $n_2 = 15$ test the claim that
 $S_1 = 12$ $S_2 = 5$ $T_1 = T_2$.
H₀: $T_1 = T_2$ claim Always make Sure S_1 , S_2
H₁: $T_1 = T_2$ claim Always make Sure S_1 , S_2
H₁: $T_1 = T_2$ claim Always make Sure S_1 , S_2
H₁: $T_1 = T_2$ claim Always make Sure S_1 , S_2
H₁: $T_1 = T_2$ claim Always make $S_1 = S_2$
H₂: $T_1 = T_2$ claim $S_1 = T_1$ stats $S_1 = 12$
 $S_1 = 12$
 $S_1 = 12$
 $S_2 = 5.76$ P-value $P = .005$
H₂ invalid $= D I$ muslid claim $= D$ Reject the $T_1 = S_2$
H₂ invalid T_1 $T_2 = T_1$ stats $T_1 = S_1$
 $T_2 = S_1$
 $T_2 = S_1$ $T_1 = S_2$
 $T_2 = S_1$
 $T_1 = S_2$
 $T_2 = S_1$
 $T_1 = S_2$
 $T_2 = S_1$

Morning class : n=8 , $\overline{\chi}=82$, S=10ASternoon Class! n=12, $\overline{\chi}=85$ S=11 1) I dentify group 1 & group 2 So I can Compare two Pop. Standard deviction. ASternoon 1 Morning $S_1 \rangle S_2$ M1= 12 M2=8 S2= 10 SF 11 2) Test the claim that there is no difference between two Pop. Standard deviations. $F_{=} \sum_{i=1}^{r} \frac{||^{2}}{||^{2}} ||^{2}$ Ho: JT = JZ Claim CTS F=1.21 H1: 0, +02 TTT P-value P = .8282-SampFTest P-value > X Ho Valid => Valid Claim => Support the .828 .05 Claim HI invalid FTR the claim

I randomly selected 10 students Snom ELAC. Here are the ages: Find x & S. 40 45 32 22 18 > Round to 1-decimal 21 30 35 25 25 M=10 2=29.8 S=8.4 I also randomly selected 10 students Srom Mt.SAC. ages: Here are their Find x is. Round to 1-decimal 43 20 27 34 19 35 18 46 m=10 25 30 x=29.7 S=9.8 use a=.1 to test the claim that two POP. Standard deviations are dissevent 01 = 12 2-Samp FTest Mt. SAC | ELAC $H_0: \sigma_1 = \sigma_2$ m2=10 CTS F=1.361 N=10 H1: JT # J2 TTT Claim S1=9.8 | S2=8.4 P. Value P=,653 S1)S2 P-value) & => Ito valid .653 .1 HI invalid => Invalid Claim Verify CTS $F = \frac{S_1^2}{S_2^2} \frac{9.8^2}{84^2} = 1.361$ Reject the claim

